Extensions 1→N→G→Q→1 with N=C32 and Q=C3xSD16

Direct product G=NxQ with N=C32 and Q=C3xSD16
dρLabelID
SD16xC33216SD16xC3^3432,518

Semidirect products G=N:Q with N=C32 and Q=C3xSD16
extensionφ:Q→Aut NdρLabelID
C32:(C3xSD16) = C3xAΓL1(F9)φ: C3xSD16/C3SD16 ⊆ Aut C32248C3^2:(C3xSD16)432,737
C32:2(C3xSD16) = C3xC32:2SD16φ: C3xSD16/C6D4 ⊆ Aut C32244C3^2:2(C3xSD16)432,577
C32:3(C3xSD16) = He3:6SD16φ: C3xSD16/C8C6 ⊆ Aut C32726C3^2:3(C3xSD16)432,117
C32:4(C3xSD16) = He3:8SD16φ: C3xSD16/D4C6 ⊆ Aut C327212-C3^2:4(C3xSD16)432,152
C32:5(C3xSD16) = He3:10SD16φ: C3xSD16/Q8C6 ⊆ Aut C327212+C3^2:5(C3xSD16)432,161
C32:6(C3xSD16) = C3xDic6:S3φ: C3xSD16/C12C22 ⊆ Aut C32484C3^2:6(C3xSD16)432,420
C32:7(C3xSD16) = C3xD12.S3φ: C3xSD16/C12C22 ⊆ Aut C32484C3^2:7(C3xSD16)432,421
C32:8(C3xSD16) = C3xC32:5SD16φ: C3xSD16/C12C22 ⊆ Aut C32484C3^2:8(C3xSD16)432,422
C32:9(C3xSD16) = SD16xHe3φ: C3xSD16/SD16C3 ⊆ Aut C32726C3^2:9(C3xSD16)432,219
C32:10(C3xSD16) = C32xC24:C2φ: C3xSD16/C24C2 ⊆ Aut C32144C3^2:10(C3xSD16)432,466
C32:11(C3xSD16) = C3xC24:2S3φ: C3xSD16/C24C2 ⊆ Aut C32144C3^2:11(C3xSD16)432,482
C32:12(C3xSD16) = C32xD4.S3φ: C3xSD16/C3xD4C2 ⊆ Aut C3272C3^2:12(C3xSD16)432,476
C32:13(C3xSD16) = C3xC32:9SD16φ: C3xSD16/C3xD4C2 ⊆ Aut C3272C3^2:13(C3xSD16)432,492
C32:14(C3xSD16) = C32xQ8:2S3φ: C3xSD16/C3xQ8C2 ⊆ Aut C32144C3^2:14(C3xSD16)432,477
C32:15(C3xSD16) = C3xC32:11SD16φ: C3xSD16/C3xQ8C2 ⊆ Aut C32144C3^2:15(C3xSD16)432,493

Non-split extensions G=N.Q with N=C32 and Q=C3xSD16
extensionφ:Q→Aut NdρLabelID
C32.(C3xSD16) = SD16x3- 1+2φ: C3xSD16/SD16C3 ⊆ Aut C32726C3^2.(C3xSD16)432,220
C32.2(C3xSD16) = C9xC24:C2φ: C3xSD16/C24C2 ⊆ Aut C321442C3^2.2(C3xSD16)432,111
C32.3(C3xSD16) = C9xD4.S3φ: C3xSD16/C3xD4C2 ⊆ Aut C32724C3^2.3(C3xSD16)432,151
C32.4(C3xSD16) = C9xQ8:2S3φ: C3xSD16/C3xQ8C2 ⊆ Aut C321444C3^2.4(C3xSD16)432,158
C32.5(C3xSD16) = SD16xC3xC9central extension (φ=1)216C3^2.5(C3xSD16)432,218

׿
x
:
Z
F
o
wr
Q
<