extension | φ:Q→Aut N | d | ρ | Label | ID |
C32:(C3xSD16) = C3xAΓL1(F9) | φ: C3xSD16/C3 → SD16 ⊆ Aut C32 | 24 | 8 | C3^2:(C3xSD16) | 432,737 |
C32:2(C3xSD16) = C3xC32:2SD16 | φ: C3xSD16/C6 → D4 ⊆ Aut C32 | 24 | 4 | C3^2:2(C3xSD16) | 432,577 |
C32:3(C3xSD16) = He3:6SD16 | φ: C3xSD16/C8 → C6 ⊆ Aut C32 | 72 | 6 | C3^2:3(C3xSD16) | 432,117 |
C32:4(C3xSD16) = He3:8SD16 | φ: C3xSD16/D4 → C6 ⊆ Aut C32 | 72 | 12- | C3^2:4(C3xSD16) | 432,152 |
C32:5(C3xSD16) = He3:10SD16 | φ: C3xSD16/Q8 → C6 ⊆ Aut C32 | 72 | 12+ | C3^2:5(C3xSD16) | 432,161 |
C32:6(C3xSD16) = C3xDic6:S3 | φ: C3xSD16/C12 → C22 ⊆ Aut C32 | 48 | 4 | C3^2:6(C3xSD16) | 432,420 |
C32:7(C3xSD16) = C3xD12.S3 | φ: C3xSD16/C12 → C22 ⊆ Aut C32 | 48 | 4 | C3^2:7(C3xSD16) | 432,421 |
C32:8(C3xSD16) = C3xC32:5SD16 | φ: C3xSD16/C12 → C22 ⊆ Aut C32 | 48 | 4 | C3^2:8(C3xSD16) | 432,422 |
C32:9(C3xSD16) = SD16xHe3 | φ: C3xSD16/SD16 → C3 ⊆ Aut C32 | 72 | 6 | C3^2:9(C3xSD16) | 432,219 |
C32:10(C3xSD16) = C32xC24:C2 | φ: C3xSD16/C24 → C2 ⊆ Aut C32 | 144 | | C3^2:10(C3xSD16) | 432,466 |
C32:11(C3xSD16) = C3xC24:2S3 | φ: C3xSD16/C24 → C2 ⊆ Aut C32 | 144 | | C3^2:11(C3xSD16) | 432,482 |
C32:12(C3xSD16) = C32xD4.S3 | φ: C3xSD16/C3xD4 → C2 ⊆ Aut C32 | 72 | | C3^2:12(C3xSD16) | 432,476 |
C32:13(C3xSD16) = C3xC32:9SD16 | φ: C3xSD16/C3xD4 → C2 ⊆ Aut C32 | 72 | | C3^2:13(C3xSD16) | 432,492 |
C32:14(C3xSD16) = C32xQ8:2S3 | φ: C3xSD16/C3xQ8 → C2 ⊆ Aut C32 | 144 | | C3^2:14(C3xSD16) | 432,477 |
C32:15(C3xSD16) = C3xC32:11SD16 | φ: C3xSD16/C3xQ8 → C2 ⊆ Aut C32 | 144 | | C3^2:15(C3xSD16) | 432,493 |